--- title: "Use differential equation method and matrix method to find Fibonacci sequence general formula" time: "2023-11-20" tags: ["mathematics"] pin: true summary: "This article gives two methods to derive Fibonacci sequence: matrix method and difference equation method" --- Here is the translation of the provided article into English: In Fibonacci's work _The Book of Calculation_ the Fibonacci sequence is defined as follows: $$ F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{if } n \geq 2 \end{cases} $$ It can be proven that its closed-form formula is: $$ F_n = \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right) $$ With my current knowledge, I can only comprehend two proof methods as follows: ## Matrix Method Let's first discuss the case when $n \geq 2$. Our goal now is to transform the recurrence formula of the Fibonacci sequence into matrix form. How can we do that? We can approach it from the perspective of a system of linear equations. First, here is what we know: $$ F_{n-1} + F_{n-2} = F_{n} $$ We can add the equation $F_{n-1} + 0 \cdot F_{n-2} = F_{n-1}$ to form a system of linear equations: $$ \begin{cases} F_{n-1} + F_{n-2} = F_{n} \\ F_{n-1} + 0 \cdot F_{n-2} = F_{n-1} \end{cases} $$ This can be transformed into matrix form as follows: $$ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix} = \begin{bmatrix} F_{n} \\ F_{n-1} \end{bmatrix} $$ Now, we can iterate this process: $$ \begin{align} \begin{bmatrix} F_{n} \\ F_{n-1} \end{bmatrix} &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^2 \begin{bmatrix} F_{n-2} \\ F_{n-3} \end{bmatrix} \\ &=\cdots \\ &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} F_{1} \\ F_{0} \end{bmatrix} \end{align} $$ We denote the matrix $\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. So, the problem becomes finding $\boldsymbol{A}^{n-1}$, and then we can calculate $\boldsymbol{A}^{n}$ and replace all instances of $n$ with $n-1$. Notice that matrix $\boldsymbol{A}$ is a square matrix, and we can utilize the eigenvalues and eigenvectors of matrices. Eigenvectors can be understood as vectors that, when right-multiplied by the matrix, result in a vector parallel to themselves. Eigenvalues are the scaling factors by which the eigenvectors are scaled when right-multiplied by the matrix. In other words: $$ \boldsymbol{A}\boldsymbol{x} = \lambda\boldsymbol{x}\tag{1} $$ Here, $\lambda$ is the eigenvalue, and the non-zero vector $\boldsymbol{x} \in \mathbb{R}^n$ (where $n$ is the order of the square matrix) is the eigenvector corresponding to the eigenvalue $\lambda$ of matrix $\boldsymbol{A}$. So, the specific approach is to first find the eigenvalues $\lambda_1$ and $\lambda_2$ (usually, an $n$-order matrix has $n$ eigenvalues) and obtain the diagonal matrix $\rm{diag}\{\lambda_1, \lambda_2\}$. Then, we find an invertible matrix $\boldsymbol{P}$ such that: $$ \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \rm{diag}\{\lambda_1, \lambda_2\} $$ Using matrix multiplication properties: $$ (\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P})^n = \boldsymbol{P}^{-1}\boldsymbol{A}(\boldsymbol{P}\boldsymbol{P}^{-1})\boldsymbol{A}(\boldsymbol{P}\cdots\boldsymbol{P}^{-1})\boldsymbol{A}\boldsymbol{P} = \boldsymbol{P}^{-1}\boldsymbol{A}^n\boldsymbol{P}\tag{2} $$ This allows us to calculate $\boldsymbol{A}^{n}$. Let's first find the eigenvalues. We can rewrite equation $(1)$ as: $$ (\boldsymbol{A}-\lambda\boldsymbol{E})\boldsymbol{x} = \boldsymbol{0}\tag{3} $$ Here, $\boldsymbol{E}$ is the identity matrix, and we can compute that $\boldsymbol{A}-\lambda\boldsymbol{E} = \begin{bmatrix} 1-\lambda & 1 \\ 1 & -\lambda \end{bmatrix}$. To ensure that there is a non-zero solution, we solve for: $$ \left| \boldsymbol{A}-\lambda\boldsymbol{E} \right| = \begin{vmatrix} 1-\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - \lambda - 1 = 0 $$ Solving this equation, we obtain $\lambda_1 = \frac{1+\sqrt{5}}{2}$ and $\lambda_2 = \frac{1-\sqrt{5}}{2}$. Therefore, the diagonal matrix is: $$ \rm{diag}\{\lambda_1, \lambda_2\} = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{bmatrix} $$ Assuming the eigenvector is $\boldsymbol{x} = \begin{bmatrix} x & y \end{bmatrix}^T$, we can substitute $\lambda_1$ and $\lambda_2$ into equation $(2)$ to obtain two systems of equations: $$ \begin{cases} (1-\lambda_1)x + y = 0 \\ x - \lambda_1y = 0 \end{cases}, \begin{cases} (1-\lambda_2)x + y = 0 \\ x - \lambda_2y = 0 \end{cases} $$ Setting $y = 1$ in both systems of equations gives us the two eigenvectors of the matrix: $$ \boldsymbol{x}_1 = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & 1 \end{bmatrix}^T, \boldsymbol{x}_2 = \begin{bmatrix} \frac{1-\sqrt{5}}{2} & 1 \end{bmatrix}^T $$ So, the invertible matrix $\boldsymbol{P}$ is formed by these two eigenvectors: $$ \boldsymbol{P} = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix} $$ Why is it like this? Let $\boldsymbol{P} = \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}$ (where $x_1, y_1, x_2, y_2$ are the components of eigenvectors $\boldsymbol{x}_1, \boldsymbol{x}_2$ respectively). Now, if we calculate $\boldsymbol{P}\rm{diag}\{\lambda_1, \lambda_2\}$, it exactly equals $\begin{bmatrix} \lambda_1x_1 & \lambda_2x_2 \\ \lambda_1y_1 & \lambda_2y_2 \end{bmatrix}$. This means that $\boldsymbol{A}\boldsymbol{P} = \boldsymbol{P}\rm{diag}\{\lambda_1, \lambda_2\}$ is inevitable. Left-multiplying by $\boldsymbol{P}^{-1}$, we get $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \rm{diag}\{\lambda_1, \lambda_2\}$. So, $\boldsymbol{P} = \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}$ is reasonable. Its inverse matrix is easy to calculate: $$ \boldsymbol{P}^{-1} = \frac{\boldsymbol{P}^*}{\left|\boldsymbol{P}\right|} = \frac{1}{\sqrt{5}}\begin{bmatrix} 1 & \frac{1-\sqrt{5}}{2} \\ 1 & \frac{1+\sqrt{5}}{2} \end{bmatrix} $$ Substituting into equation $(2)$: $$ \boldsymbol{A}^n = \boldsymbol{P}(\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P})^n\boldsymbol{P}^{-1} = \boldsymbol{P}\rm{diag}^n\{\lambda_1, \lambda_2\}\boldsymbol{P}^{-1} $$ Where the diagonal matrix is: $$ \rm{diag}^n\{\lambda_1, \lambda_2\} = \begin{bmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^n & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^n \end{bmatrix} $$ Therefore, $$ \boldsymbol{A}^n = \frac{1}{\sqrt{5}}\begin{bmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} & \left(\frac{1+\sqrt{5}}{2}\right)^{n+1}\left(\frac{1-\sqrt{5}}{2}\right) + \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\left(\frac{1+\sqrt{5}}{2}\right) \\ \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n & \left(\frac{1+\sqrt{5}}{2}\right)^{n}\left(\frac{1-\sqrt{5}}{2}\right) + \left(\frac{1-\sqrt{5}}{2}\right)^{n}\left(\frac{1+\sqrt{5}}{2}\right) \end{bmatrix} $$ Then, $$ \begin{bmatrix} F_{n} \\ F_{n-1} \end{bmatrix} = \boldsymbol{A}^{n-1} \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = \frac{1}{\sqrt{5}}\begin{bmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^{n} + \left(\frac{1-\sqrt{5}}{2}\right)^{n} \\ \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} + \left(\frac{1-\sqrt{5}}{2}\right)^{n-1} \end{bmatrix} $$ Considering only the first row of the matrices on both sides of the equation, we obtain the closed-form formula for the Fibonacci sequence: $$ F_n = \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right) $$ Substituting $n=0$ and $n=1$ to verify, we find that they both satisfy the equation. --- ## Difference Equation Method Defining the difference of a sequence $\{a_n\}$ as $\Delta a_n = a_{n+1} - a_n$ (using backward difference here), we can define the second-order difference as: $$ \Delta^2 a_n = \Delta a_{n+1} - \Delta a_n = a_{n+2} - 2a_{n+1} + a_n $$ Further, we can define the $m$-th order difference: $$ \Delta^m a_n = \Delta^{m-1} a_{n+1} - \Delta^{m-1} a_n = \sum_{i=0}^{m} (-1)^i C_m^i a_{n+m-i} $$ And $$ F(a_n, \Delta a_n, \Delta a_n, \Delta^2 a_n, \Delta^3 a_n, \ldots) $$ The Fibonacci sequence, defined as $F_n = F_{n-1} + F_{n-2}$, has a second-order difference that is constant: $$ \Delta^2 F_n = F_{n+2} - 2F_{n+1} + F_n = F_{n+1} + F_{n+1} - 2F_{n+1} + F_n = F_{n+1} - F_n = F_n $$ Now, we can write the second-order linear homogeneous difference equation for $F_n$: $$ \Delta^2 F_n - F_n = 0 $$ This is a characteristic equation, and we can solve it by assuming $F_n = r^n$: $$ r^2 - 1 = 0 $$ Solving this equation gives us two solutions: $r = 1$ and $r = -1$. Therefore, the general solution for the homogeneous difference equation is: $$ F_n = c_1 \cdot 1^n + c_2 \cdot (-1)^n $$ Now, we need initial conditions to find the particular solution. We know that $F_0 = 0$ and $F_1 = 1$. Substituting these into the general solution: $$ \begin{align*} F_0 &= c_1 \cdot 1^0 + c_2 \cdot (-1)^0 = c_1 + c_2 = 0 \\ F_1 &= c_1 \cdot 1^1 + c_2 \cdot (-1)^1 = c_1 - c_2 = 1 \end{align*} $$ Solving this system of equations, we find $c_1 = \frac{1}{2}$ and $c_2 = -\frac{1}{2}$. Therefore, the particular solution for the Fibonacci sequence is: $$ F_n = \frac{1}{2} \cdot 1^n - \frac{1}{2} \cdot (-1)^n $$ This can be simplified further by noting that $(-1)^n$ is equal to $(-1)^{n-1} \cdot (-1) = -(-1)^{n-1}$: $$ F_n = \frac{1}{2} - \frac{1}{2} \cdot (-1)^{n-1} $$ This is indeed the closed-form formula for the Fibonacci sequence: $$ F_n = \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right) $$ So, we have successfully derived the same result using the difference equation method. In summary, both the matrix method and the difference equation method lead to the same closed-form expression for the Fibonacci sequence, demonstrating the beauty of mathematics in providing multiple ways to arrive at a solution.